
PEN: Design and Evaluation of Partial-Erase for 3D NAND-Based
High Density SSDs

Chun-Yi Liu, Jagadish B. Kotra, *Myoungsoo Jung, Mahmut T. Kandemir
{cql5513, jbk5155, kandemir}@cse.psu.edu, *mj@camelab.org

The Pennsylvania State University, *Yonsei University

Abstract
3D NAND flash memories promise unprecedented flash
storage capacities, which can be extremely important in
certain application domains where both storage capac-
ity and performance are first-class target metrics. How-
ever a block of 3D NAND flash contains many more
pages than its 2D counterpart. This increased number of
pages-per-block has numerous ramifications such as the
longer erase latency, higher garbage collection costs, and
increased write amplification factors, which can collec-
tively prevent the 3D NAND flash products from becom-
ing the mainstream in high-performance storage domain.
In this paper, we introduce PEN, an architecture-level
mechanism that enables partial-erase of flash blocks. Us-
ing our proposed partial-erase support, we also discuss
how one can build a custom garbage collector for two
types of flash translation layers (FTLs), namely, block-
level FTL and hybrid FTL. Our experimental evaluations
of PEN with a set of diverse real storage workloads in-
dicate that the proposed approach can shorten the write
latency by 44.3% and 47.9% for block-level FTL and hy-
brid FTL, respectively.

1 Introduction

NAND flash based solid state disks (SSDs) have become
one of the dominant storage components in different
computing domains, ranging from embedded systems to
general purpose workstations to high-performance dat-
acenters [6, 13, 22, 57]. High-performance computing
employs SSDs in various ways such as an SSD cache
[41, 55] or a bursty buffer [39], to mitigate the per-
formance bottlenecks imposed by the conventional hard
disk drives (HDDs).

While SSDs can significantly improve the overall sys-
tem performance, there is also an emerging trend that
pushes SSDs toward an entirely different direction [20,
31, 51]. Specifically, major flash vendors amplify stor-
age capacity by transitioning from 2D NAND flash to
3D NAND flash. The 3D NAND flash technology lay-
ers flash cells vertically, which can increase the size of

the individual flash dies. For example, Samsung stacks
100 layers of charge trap flash (CTF) cells, and as a re-
sult can achieve 1 Terabit density flash dies without any
modification to the existing flash interface [10].

Layering multiple CTF cells increases the number of
pages in a physical block, rather than the number of
blocks within a die, which makes the internal micro-
architecture of 3D NAND different compared to the 2D
planar flash. Consider the vertical architecture of a par-
ticular 3D NAND flash [20], VNAND. VNAND increases
the die density by stacking more layers, but in this archi-
tecture, CTF cells across the different layers share a same
set of pillars (channel), thereby increasing the number of
pages per block. Furthermore, as all the block-related
control circuits of VNAND reside on the block decoder
of the top layer due to staircase-like control gate [20],
this decoder area controls the signals to all CTF cells of
the underlying layers. Consequently, as one stacks more
layers, the amount of such block-related control circuits
for each block increases. However, the area from where
one can control all layers is limited, which in turn re-
duces the number of blocks but increases the number of
pages per block. Owing to this, a block of VNAND con-
tains at least 3 times more pages per block compared to
the 2D flash.

Unfortunately, the new structure of VNAND can ex-
acerbate the overheads incurred due to garbage collec-
tion (GC), which is one of the well-known performance
bottlenecks in modern SSDs. Specifically, the peripheral
circuits and the micro-architecture of VNAND’s [19, 26]
large-granularity erase makes the latency characteristics
of 3D NAND worse compared to 2D flash. In addition,
the large number of pages per block can potentially ac-
commodate more valid data that a flash firmware needs
to migrate for each GC. The longer erase time and rela-
tively more valid pages to migrate (i.e., a series of reads
and writes) can have a significant performance impact
on GC operations and may in turn render 3D flash diffi-
cult to directly replace 2D flash in many designs of high-
performance SSD.

In this work, we propose PEN, a novel strategy to en-
able Partial Erase for 3D NAND flash technology. PEN

alleviates the GC overheads by introducing a finer erase
unit in 3D NAND, which can reduce number of valid
pages copied during a GC, thereby reducing the GC la-
tency. To the best of our knowledge, this is the first
work that investigates partial-erase for 3D NAND, start-
ing from the circuit level and evaluating its architectural
ramifications from both the performance and reliability
angles. Our contributions can be summarized as follows:
• We present a comprehensive architectural support,
“partial-erase operation” that addresses the potential per-
formance degradation imposed by 3D NAND flash. The
proposed low-level operation can selectively reset multi-
ple pages instead of erasing a bulk block by modifying
the 3D NAND peripheral circuits, page decoders, and
command logics, with minimum area overhead.
• While our partial-erase operation can be leveraged to
alleviate performance degradation, the number of pages
per reset should be determined at the design time. How-
ever, it is a non-trivial task to statically decide the op-
eration granularity of such partial-erase operation. This
inflexibility in turn can lead to a large mapping table size
or introduce more valid page migrations. We propose
a novel GC algorithm, called “M-Merge” that keeps the
original mapping table size when the partial-erase oper-
ation is employed. In addition, M-Merge can adaptively
decide the optimal partial-erase granularity by consider-
ing program-disturbance issues at a run-time.
• We demonstrate that the performance degradation in
3D NAND flash stems from the increased number of
valid pages copied during a GC operation. The evalu-
ation studies using a set of 12 real storage workloads re-
veal that our PEN mechanism (putting partial-erase op-
eration and M-Merge together) can significantly reduce
the valid page copies during a GC operation, thereby im-
proving the overall system performance.

2 Background

2.1 NAND Flash Organization
NAND flash memory consists of several blocks consti-
tuting a plane, as shown in Figure 1. Each block is made
up of a number of pages. Page is a unit of read and
write, and its size varies from 2KB to 32KB [1]. A tra-
ditional 2D NAND flash typically consists of 128 to 192
such pages per block. The number of pages per block
increases [10] in a 3D NAND flash, and it can be as high
as 576 [29].

Figure 1 shows a vertical-channel 3D NAND flash im-
plemented by Samsung [20]. NAND flash cells con-
nected in series form a pillar (channel) with top and bot-
tom select transistors represented by UpperST and Low-
erST, respectively. Cells in the same horizontal axis form
a page, represented by P-0, P-1, etc. The upper select

Plane 0

Plane

Abstract

View

Block Layer

View

SG  select gate

CG  control gate

ST  select transistor

P-0

P-4

P-8

P-12

Bit 0 Bit 1 Bit n

Slice 0

Lower
ST

…

…

…

…

…

123

567

9

13

…

…

Page
Decoder

USG 0

USG 3

CG 0

CG 3

LSG
Pillar

1011

1415

Block Physical View

Upper

ST

P-0
P-1
P-2
P-3

P-14

Block N

P-15

…

P-0
P-1
P-2
P-3

P-14

Block 0

P-15

… Lower ST

layer

Cell layer 3
Cell layer 2
Cell layer 1
Cell layer 0

Upper ST

layer

Block 0

Figure 1: Vertical-channel NAND flash circuit.

gates (USG) and the control gates (CG) are used in ac-
cessing a page corresponding to an I/O request. USG is
used to select the corresponding slice and the CG is used
to select the corresponding page in a slice.

The basic operations in a NAND flash chip are read,
write, and erase [46]. The erase operation resets the
data to value ”1” in a page. It is performed at a block-
granularity; the data in all the pages in a block are reset
per erase operation. In a NAND flash device, the num-
ber of erase cycles is limited. Typically, an erase opera-
tion is implemented in two phases: (1) data-erase and (2)
erase-verify. During the data-erase phase, the data in all
the pages in a victim block are reset, and the erase-verify
phase checks if all the pages have been successfully reset
or not. The entire erase operation is iteratively repeated
until the data in all the pages are successfully reset.

The data-erase circuit implementation of an erase op-
eration is vendor-specific. There are two popular imple-
mentations: (a) bulk data-erase (implemented in Sam-
sung SSDs) [20] and (b) gate-induced drain leak (GIDL)
(implemented in Toshiba and Macronix SSDs) [27, 31,
51] data-erase. Bulk data-erase operation imposes a high
voltage (typically 20V) to the shared substrate (contain-
ing multiple blocks), while the CGs for the block being
erased are set to 0V. Hence, all the pages in a block are
erased per erase operation unlike the GIDL implementa-
tion. In GIDL, the data-erase operation is implemented
at a pillar granularity, and all the pillars in the same block
are erased simultaneously. More specifically, it is imple-
mented by imposing high voltage to USGs, LSG and bit-
lines, while the voltage of CGs is set to different values
based on the strength of GIDL. The erase-verify imple-
mentation is achieved by imposing CGs with 0V, while
SGs are imposed with bypass voltage. An unsuccessfully
erased page is identified by measuring the current pass-
ing through the channels when bitline voltage changes
from 0V to floating.

2.2 Flash Translation Layer (FTL)

The NAND flash vendors implement a Flash Translation
Layer (FTL) [3, 15, 18, 21, 38, 40] to keep track of the
physical location of a page in flash chips. FTL imple-

Chip
interface

Chip
interface

Free page
Valid page
Invalid page

D-block U-block
(block pair)

Free
block

Read page to controller

Step (2): Read valid page

D-block U-block

Step (3):Write valid page &
invalidate page

Write page to free block

Repeat steps (2)

& (3) until no

valid pages in

D/U-blocks
D-block U-block

Step (4): Erase D/U-block

New D-block

Update mapping
table(FTL)

WRWWWW

I/O Request Queue

StalledStalled

Chip 0
Chip 1

SSD ControllerVictim blocks

Free
blockFree block

Figure 2: NFTL GC (Merge) overview.

ments two major functionalities, namely, address map-
ping and garbage collection.

2.2.1 Address Mapping

FTL maintains a data structure called mapping table. It
maps a given logical page/block address to the physical
location. Each read/write I/O request has to be translated
by FTL to route the request to a corresponding physical
page. When a logical page is updated, the old physical
page is marked as “invalid,” since SSDs do not support
in-place update. The number of invalid pages in chip
increases as the write requests are processed. Address
mapping can be broadly classified into three categories
based on the granularity at which the mappings are man-
aged viz., (a) page-level, (b) block-level, and (c) hybrid
mapping.

Page-level Mapping: This address mapping imple-
mentation needs a huge mapping table to manage transla-
tions at a page granularity. Note that a 1TB SSD requires
at least 1GB mapping table. While SSD capacity doubles
as the number of stacked NAND layers increases, such a
huge mapping table becomes a major issue for SSD de-
sign (in terms of both price and power consumption).

Block-level Mapping: Block-level mappings only
store the mapping information per block, and therefore,
the size of mapping table is smaller than other mappings.

A well-known block-level implementation is NFTL
[3]. In NFTL, the mapping information of a block con-
sists of a Data block (D-block) and Update block (U-
block). A D- and U-block together are referred to as
a block-pair. D-block represents the actual data block
where a page is originally mapped to, while U-block rep-
resents the block to which the updated pages from D-
block are written to, leaving the corresponding paired D-
block page invalid. Typically, the number of U-blocks is
much smaller than the number of D-blocks; so, multiple
D-blocks compete for a U-block.

A new write of NFTL is performed on the mapped
page in the D-block, while an updated write to the same
address is logged in the paired U-block. As a result,
a read to an address may have to search (read) pages

from the U-block sequentially to retrieve the latest copy.
Hence, the read and write performance can be slower in
NFTL compared to that of the page-level mapping.

Hybrid Mapping: The hybrid mapping combines the
best of the two previous mappings by (a) adopting the
block-level mapping to reduce the mapping table size,
and (b) utilizing partial (or small) amount of the page-
level mapping table to accelerate the performance. Vari-
ous such proposals include Superblock [21], FAST [40],
DFTL [15], and LAST [38]. In this work, we only focus
on the Superblock FTL implementation.1

2.2.2 Garbage Collection (GC)

GC is triggered by the write requests or the controller
firmware to clear the invalid pages left in the flash chips,
so that SSDs have enough free pages for the future
writes. GC typically contains four steps: (1) selecting
victim blocks, (2) reading valid pages from the victim
blocks, (3) writing the valid pages into the reserved free
blocks, and (4) erasing the victim blocks. Typically, steps
(1) and (4) are executed only once, while steps (2) and (3)
are executed repeatedly until no valid page is left in the
victim blocks. Since GC changes the FTL address map-
ping, different FTLs implement their GC algorithms.

Figure 2 illustrates the GC in NFTL, which is mainly
achieved by Merge operation. Merge copies all valid
pages contained in victim block pair to a reserved free
block, after which the victim block pair is erased. There
are two scenarios when a GC will be triggered: (a) fully-
utilized U-block and (b) unpaired D-block. In scenario
(a), the paired U-block has no free page, and therefore,
GC needs to be triggered to clear the invalid pages in this
block pair. In scenario (b), the D-block corresponding to
a write request does not have a U-block paired with it; as
a result, GC is triggered on another block pair to reclaim
a free U-block. We assume that the victim block pair for
step (1) has already been selected. The second step in-
volves reading the valid page from the victim block pair.
In the third step, the page read in the second step is writ-

1Our proposal works equally well for other hybrid FTL implemen-
tations as well.

0

30

60

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

prn_1 proj_0 proj_1 proj_2 usr_1 usr_2

La
te

n
cy

 (
in

 m
se

c)
Spare Area Read Write GC Spare Area Read GC Read GC Write GC Erase

(a) High write-intensive workloads

0

4

8

12

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

hm_0 prn_0 prxy_0 src1_1 src1_2 stg_1

La
te

n
cy

 (
in

 m
se

c) Spare Area Read Write GC Spare Area Read GC Read GC Write GC Erase

(b) Low write-intensive workloads

Figure 3: Write latency breakdown for different block sizes in the case of NFTL.

ten into the free block and the read page is invalidated in
the victim block. These steps, (2) and (3), are repeated
for all the valid pages in the victim blocks, as depicted
in the figure. Once all the valid pages are copied, in step
(4), all the pages in the block are erased using an erase
operation, also shown in the figure. Finally, the FTL ad-
dress mapping is updated to reflect the new D-block.

As depicted in Figure 2, the on-demand read/write
I/O requests cannot be served by the SSD chips during
the GC and are stalled in the per-channel DRAM queue
[4, 32–36, 43, 48, 52, 56] in the SSD controller. As a
result, the GC can negatively affect the application per-
formance [23–25]

2.3 Effect of Block Size

2.3.1 Effect of Block Size on Performance

With the increase in density for the 3D NAND flash, the
number of valid pages per block increases. As a result,
the number of pages to be copied from the victim block
to the free block during a GC also increases. Conse-
quently, the GC duration increases, in turn increasing
the access latency for the read and write I/O requests,
thereby degrading the overall performance significantly.
This issue is widely referred to as the “Big Block” prob-
lem [54].

We performed experiments to quantitatively demon-
strate the relationship between GC and the number of
pages per block in the case of NFTL (block-level FTL)2.
All the configurations tested have the same SSD capacity
to prevent the capacity from affecting the GC triggered
frequency. To keep the same capacity, we ensure that
a plane has the same number of pages, but the number
of pages per block are varied across different configura-
tions. Here are the four evaluated configurations (blocks
per plane, pages per block): (a) (15104, 72), (b) (7552,
144), (c) (3776, 288), and (d) (1888, 576). The rest of
parameters can be found in Table 1. All four configura-
tions are evaluated on the SSDSim [17] simulator using
12 write-dominant workloads shown in Table 2.

2We observed that Superblock FTL has a similar trend.

0

0.2

0.4

0.6

N
u

m
b

e
r

o
f

G
C

s
(i

n

m
ill

io
n

)

Blk_72 Blk_144 Blk_288 Blk_576

0.66

Figure 4: Effect of block sizes on the number of GC in-
vocations in the case of NFTL.

Figures 3a and 3b show the breakdown of average
write access latencies (in milliseconds) for the different
block sizes. As can be observed, as the number of pages
per block increases, the latency increase and becomes
maximum for a block with 576 pages. The access la-
tency incurred by a write request includes (1) the time
spent in performing the actual write to the pages, and (2)
the time spent in waiting in the I/O request queue if this
write triggers a GC. The GC time which effects the wait
time of a write I/O request can further be broken down
into (a) GC spare-area read, (b) GC Read, (c) GC Write,
and (d) GC Erase, as shown in Figures 3a and 3b. The
GC spare-area read time accounts for the time spent in
reading the page status to identify the valid pages. The
GC read/write time accounts for copying the identified
valid pages from the victim blocks to a free block, while
the GC erase time accounts for the time spent in perform-
ing the erase of the victim blocks.

Figures 3a and 3b plot the write access latency break-
down for the high and low write-intensive workloads,
respectively. In Figure 3a, as the number of pages per
block increases, the time spent in copying the valid pages
(which includes GC read/write) increases from 58% for a
block with 72 pages to 79% for a block with 576 pages.
This result indicates that reducing the number of valid
pages to be copied is crucial under the high-intensive
workloads. In figure 3b, the time spent in copying the
valid pages remains the same, but the time spent in read-
ing the spare-area increases due to the inherent design of
NFTL.

Figure 4 shows the number of GC invocations for dif-
ferent block sizes for all workloads. In general, the num-
ber of GC invocations are halved as the number of pages

0

6

12

18

prn_1 proj_0 proj_1 proj_2 prxy_0 usr_1 usr_2 Average

W
ri

te
 A

m
p

. Blk_72 Blk_144 Blk_288 Blk_576

Figure 5: Effect of block sizes on writes amplification in
the case of NFTL.

per block doubles; so, the time spent in erasing the blocks
decreases. However, in the high write-intensive work-
loads, such as prn 1 and proj 1, the number of GCs in-
creases as the number of pages per block doubles. This is
because the configuration with a fewer number of blocks
(larger block) has fewer competing blocks, thereby re-
sulting in higher number of GCs.

2.3.2 Impact of Block Size on Lifetime

Write amplification factor is the ratio of the amount of
data which the host writes and the amount of writes that
actually occurs on the flash media (including the GC
writes) [16].

Figure 5 shows the write amplification varying block
sizes for high write-intensive workloads. Write amplifi-
cation for the high write-intensive workloads increases,
on average, from 2.1 for a block with 72 pages to 5.1 for
a block with 576 pages. This is because, as the number
of pages per block increases, the corresponding number
of valid pages per block also increases. Since the erase
operation during a GC is at a block-level, all the valid
pages from the victim block need to be copied to a free
block, thereby increasing the write-amplification. Such
increased write-amplification may shorten the lifetime
of SSDs. We also observed that Superblock FTL [21]
has a similar trend. However, page-level FTLs do not
suffer from the increased write-amplification because of
smart page allocation and victim block selection algo-
rithms [2, 12, 16, 42, 44, 45].

3 Overview of Partial-Erase Operation

Due to the large number of pages in a block, 3D NAND-
based flash storage can be subjected to excessive valid
page copy overhead. To reduce the number of valid page
copies in 3D NAND, we propose a partial-erase oper-
ation for 3D NAND flash (PEN). Unlike the block-level
erase operation, our proposed partial-erase operation per-
forms erase at a ”partial block” (PB) granularity. Since
our proposal enables partial-erase, the amount of valid
pages that need to be copied during a GC is reduced sig-
nificantly, eventually improving the write latency and the
overall I/O throughput. Also, since the number of pages
copied during a GC reduces, the overall number of writes

induced by GCs is also reduced, and this in turn results
in lower write-amplification and increased lifetime.

Our proposal consists of both hardware and software
changes. On the hardware side, our hardware modifica-
tions for the partial-erase operation support both the par-
tial data-erase phase and the partial erase-verify phase.
The implementation of the partial data-erase phase in-
cludes inhibiting the erase of pages other than the pages
in a PB of a block. Similarly, the implementation of par-
tial erase-verify phase includes only verifying the pages
in PB to decide if the partial-erase operation needs to
continue erasing the non-erased pages in PB or not.

The partial-erase operation may incur additional pro-
gram disturbances to the neighboring pages, causing the
neighboring cells’ data to be modified. To solve the
disturbance, we provide a software-based modification,
since the hardware-based solutions [11, 14] typically re-
duce the 3D NAND array density, which may trigger
further GCs. Another reason is that the hardware-based
solutions can only mitigate the disturbance, so the data
in the boundary pages may still be corrupted with more
partial-erase operations. Therefore, a software solution
is more preferable.

576 valid pages

Free page

Valid page

Invalid page

Block-Erase

Partial-Erase

72
72

432

144

36

36

360
576

(a)

72
72

432

144

36

36

360

72 valid pages

(b)

Figure 6: (a) depicts the baseline without partial-erase
support necessitating 576 valid pages to be copied from
the victim blocks to the new block. (b) depicts our
partial-erase support which only necessitates 72 valid
pages to be copied.

On the software side, we propose a modified merge
(M-Merge) algorithm in GC that utilizes our partial-erase
operation to reduce the number of valid pages copied
from the victim blocks. One major contribution of our
M-Merge algorithm is that, the valid pages in victim
blocks are “consolidated” into fewer blocks, unlike in the
baseline GC algorithm where all valid pages are copied
to free blocks. Therefore, in our proposed algorithm, we
copy very few pages during GC. Another contribution
is that the proposed M-merge algorithm is aware of the
possible disturbance by the partial-erase, so the data in
non-erased pages will not be corrupted by disturbances.
Figure 6 shows the difference between the baseline GC
and M-Merge based GC. In this example, our M-Merge
only copies 72 valid pages during a GC; in comparison,
the baseline GC copies a total of 576 valid pages.

P-0

P-4

P-8

P-12

Bit 0 Bit 1 Bit n

Slice 0
Block 0

…

…
123

567

9

13

…

…1011

1415

0V (CG1)

Floating

Floating

Floating

Floating

Partial

Erase

Floating

…
…

…

(a) Partial data-erase phase.

P-0

P-4

P-8

P-12

Bit 0 Bit 1 Bit n

Slice 0
Block 0

…

…
123

567

9

13

…

…1011

1415

0V (CG1)

Vth

Vth

Vcc

Vcc (USG)

Vth

…
…

…

(b) Partial erase-verify phase.

P - 0
1
2
3

P - 4
5
6
7

P - 8
9

10
11

P - 12
13
14
15

1

2

3

5

8

9

10

11

12

13

14

15
Block 426

(426, 5)

Block Index

PB Index

4

5

6

7

*2

*2 +1…

(c) Partial block index.

Figure 7: Partial-Erase operation design.

4 Controller Hardware for Partial-Erase

4.1 Peripheral Circuit Modifications
The peripheral circuit modifications for our proposed
partial data-erase and partial erase-verify phases are cov-
ered in this subsection. In the baseline erase imple-
mentations of VNAND (bulk-erase) circuits, the erase-
inhibition technique is used to restrict the erase operation
to the victim block. That is, only the CGs of the victim
block are set to 0V, and the rest of the blocks are float-
ing.3 Therefore, only the cells in the victim block are
under high negative voltage difference, which resets all
the cells in the victim block. In contrast, in the data-erase
phase of the partial-erase operation, the erase-inhibition
is achieved at a partial-block (PB) granularity, as shown
in Figure 7a. In other words, only CG1 of PBs are set
to 0V, instead of the entire block as in the baseline bulk-
erase implementation. Figure 7a shows the implementa-
tion of the partial data-erase for a PB with 4 pages in the
3D NAND flash. In this example, only pages P4-P7 are
erased, while the other pages retain their earlier contents
as their corresponding CGs are set to floating.

The partial erase-verify phase verifies if all the pages
in the PB are erased successfully during the data-erase
phase or not. A modified read operation can be used as
partial erase-verify. Instead of selecting the page by only
one USG and one CG for read operation, multiple USGs
and CGs are used to select all pages in a PB to realize
the partial erase-verify phase. Then, the current on the
bitlines can be measured to figure out the PB cells’ eras-
ing status. Figure 7b shows the implementation details
of proposed partial erase-verify phase. The partial erase-
verify phase is performed on the second 4 pages (P4-P7).
The CG1 is set to 0V, so that the content in cells of sec-
ond 4 pages will reflect to the current on bitlines. The
GIDL-based erase can be modified similarly.

The hardware modification for our partial-erase oper-
ation mainly adds an extra circuit for the control logic
in the page decoder (PD), as illustrated in Figure 8.

3The CG is disconnected; so, the voltage of the cells becomes float-
ing.

3D NAND

Flash Cell

Array

(plane 0)

3D NAND

Flash Cell

Array

(plane 1)

B
lo

ck
 D

eco
d

er

Page buffers and column decoder
Peripheral circuits

Charge Pump Charge Pump
Command logic and

Analog Circuits

Top view of 3D NAND Flash Chip

PD PD

Page Decoder (PD)

Control
Logic

High voltage

switch

High voltage

switch

Figure 8: Partial-Erase circuit overview.

The required area for the control logic is at most the
same as the original control logic area. The reason
is that the proposed circuit has fewer cases to handle
than the original one. The area overhead of the pro-
posed enhancements can be calculated as follows: The
peripheral circuits in 3D NAND flash chip are around
6 ∼ 9%[19, 26, 29, 53], and the PD occupies about 4%
of the peripheral circuits[47]. In the PD, only 17% of the
area is devoted to the control logic[47]. Therefore, our
hardware overhead is at most 0.07% of the whole area,
which is negligible in a 3D NAND flash chip.

4.2 Boundary Program Disturbance
The additional program disturbance to the neighboring
pages [5, 58] comes from later write (program) operation
after the partial-erase. In Figure 7a, pages P0-P3 and P8-
P11 represent the neighboring pages that are disturbed
by the program operations after the partial-erase opera-
tion. Such 3D NAND program disturbance is known to
be small compared to the 2D counterpart, owing to the
3D CTF cell itself [19]; so, the boundary pages can tol-
erate more extra program disturbance in 3D NAND com-
pared to 2D. However, the data in those pages can still be
corrupted if the same partial-block is repeatedly erased.

4.3 Indexing the Partial Blocks
We augment the original block-level erase operation
command format shown in Figure 9 with partial-block

Start Address Address Address EndCommand

Ignored Block Index

Block Index

Block-Erase (baseline)

Partial-Erase PB Index

1 byte 24 bits 1 byte

Figure 9: Partial-Erase command format.

index bits. These additional bits, which represent the PB
index along with the already-existing block index bits,
enable our proposed partial-erase operation.

To minimize the control circuitry and utilize the exist-
ing command convention and format used by the NAND
flash, we restrict each PB to contain ρ number of pages,
which can be expressed as:

ρ =
number of pages per block

2l (PB size)

,where l represents the number of times that a block is
split into two smaller equal-sized partial-blocks. l can
take values ranging from 0 to L, where L is the maxi-
mum number of times a block can be split. If l is 0, a
block is not split causing the entire-block to be erased.
If l equals to 1, an entire block is split into two partial-
blocks so that a partial-erase can be performed on either
partial-blocks (PBs). With restricted PB sizes and loca-
tions, the number of supported PBs for the chip can only
be 2L+1− 1. For example, if L is 6 in a chip contain-
ing 576 blocks, the number of pages in a PB can take
the following values: 576, 288, 144, 72, 36, 18 and 9
pages. Hence, the possible PBs per block can be 127
(1+2+4+8+16+32+64 = 26+1−1 = 127).

Figure 7c shows our PB indexing scheme. Instead of
indexing a PB in a block with both PB size and location,
we use a single PB-index to identify both the PB size and
location. Thus, a tuple (block-index, PB-index) is used
to identify the unique PB amongst multiple blocks in the
3D NAND flash. For example, PB (426,2) contains two
smaller PBs, PB (426,4) and PB (426,5). In addition,
erasing one bigger PB is less expensive than erasing two
corresponding smaller PBs, since the NAND chip can
only execute one command at a time due to its internal
control circuitry. As a result, the PB size used during GC
highly affects the GC latency.

5 FTL for Partial-Erase

5.1 Partial Block vs. Smaller Block
The simplest approach to utilize partial-erase operation
in current FTLs is to replace the block-erase directly with
the partial-erase; so, the block size in new system shrinks
to one of the possible PB size, which is fixed and cannot
be dynamically changed. Although this option is feasi-
ble, it has two main drawbacks: (1) larger mapping ta-
ble size and (2) fixed partial-erase granularity. Enlarging

the mapping table size in modern block-level and hybrid
FTLs are costly. For example, in the extreme case, where
L is 6, 26 times of baseline mapping table size is required.
On the other hand, employing a fixed partial-erase gran-
ularity can result in sub-optimal performance as:
• A finer fixed partial-erase granularity might necessi-
tate more number of partial-erase operations to reclaim a
large number of invalid pages in the victim block. These
partial-erase overheads can be reduced by fewer coarser
granularity partial-erase operations.
• A coarser fixed partial-erase granularity might result in
more number of valid page copies.

Motivated by this, we introduce our M-merge algo-
rithm which can keep original mapping table size and
dynamically choose the optimal partial-erase granularity.

5.2 M-Merge for Block-level Mapping

We propose a new GC algorithm, M-Merge, for NFTL.
Figure 10 shows the difference between the baseline
Merge algorithm and our proposed M-Merge algorithm.
Our M-Merge algorithm is based on a sub-operation
called restore. Restore is an operation which is per-
formed on one of the PBs in D-block and its correspond-
ing valid pages in U-block. It is composed of three
stages: (1) valid-page copy from D-block to U-block ,
(2) partial-erase of PB in D-block, and (3) valid-page
copy from U-block to D-block. In the first stage, all the
valid pages in the PB must be copied to the U-block or
other blocks, so that a partial-erase can be performed for
the PB which has only invalid and free pages in the sec-
ond stage. After the PB is partial-erased, the third stage
copies back the valid pages that belong to this PB from
U-block. The cost of the restore operation is one partial-
erase and several valid page copies corresponding to this
PB. The cost of the restore operations in Figure 10 can
be calculated as follows:

restore(PB 5) = None(skipped)

restore(PB 9) = 1 PE+72 page copies

restore(PB 14) = 2 page copies+1 PE+72 page copies

5.2.1 M-Merge Examples

In the example shown in Figure 10, assuming that there
are a total of 576 (434 in D-block + 142 in U-block) valid
pages, when a GC is triggered, all these valid pages from
D-block and U-block need to be copied to a free block.
Hence, the cost of a GC merge operation in the baseline
is the cost of copying these 576 pages to a free block
along with the cost of erasing both the D- and U-blocks.
However, our M-Merge algorithm uses two restore sub-
operations to achieve the same goal.

Merge Free page

Valid page

Invalid page

D,U=>Victim blocks
M-Merge

576

72

288

72

36

43

27

36

576

72

288

72

(1) Skipped (5, 6, 8, 15)

432

(3) Restore (PB 14)

14

(2) Restore (PB 9)

9

New

D-block

576

14

D U D D D

2 pages

U

6

5

8

15

36

36

U

72

D

43

U

72

D

45

27

U

2 pages

Figure 10: Merge and M-Merge operations.

M-Merge only executes the restore operations on D-
blocks, while U-blocks are still block-erased in the end.
We use D-block PB indices (Figure 7c) of 8, 9, 5, 6,
14, and 15 to explain M-merge. Note that the non-
overlapped PBs form a complete block; hence, restor-
ing all the non-overlapped PBs can guarantee that the U-
block is erasable. We arrive at these PB indices by apply-
ing our Algorithm 1, which will be discussed shortly. As
can be observed from Figure 10, PBs 8, 5, 6 and 15 have
no invalid pages; so, M-Merge skips those PBs. PBs 9
and 14 contain invalid pages, so two restore operations
need to be performed. PB 9 has only invalid pages, and
hence, the first stage of the restore operation is skipped,
and only the following two stages are executed. Thus, the
corresponding 72 (36 + 36) valid pages in the U-block
are copied back to PB 9. On the other hand, PB 14 has
two valid pages, and as a result, those two pages have to
be copied to the U-block in the first stage, and then the
last two stages can be performed aiming PB 14. Overall,
the total cost of M-Merge is the time taken for copying
72 + 2 + 72 = 146 valid pages, partial-erasing 2 PBs, and
erasing 1 U-block.

Typically, a NAND flash read/write is 10 times faster
than an erase operation [1]. The speedup brought by
our proposed M-Merge operation over the conventional
Merge operation is:4

speedup=
(Merge time)

(M-Merge time)
=

(576+20)
(146+20+10)

= 3.38×.

M-Merge with Program Disturbance: We assume
that the previous example executes 4 times; as a result,
PB 9 is restored 4 times by M-merge, which is shown
in Figure 11. As discussed in Section 4.2, the pages ad-
jacent to PB 9 are disturbed when PB 9 is restored. To
prevent the data corruptions caused by the disturbances,
those disturbed pages will be restored by the next subse-
quent M-Merge operation that disturbs those pages. Note
that the smallest PB has only 9 pages. At time t1, the
PB 9 is restored. Thus, the upper PB (9 pages) and the
lower PB (9 pages) are disturbed, but the data in those

4The computation time can be omitted, since the execution time of
NAND flash erase operation is on a millisecond scale.

two layers are still consistent (not corrupted). At time
t2, although only PB 9 is required to be restored, the dis-
turbed pages (upper and lower PBs) are restored as well,
since the data in these PBs may be corrupted due to this
partial-erase operation. Hence, 9+ 72+ 9 pages are re-
stored. At time t3, only PB 9 is restored, since both upper
and lower PBs are corrected by the previous restore op-
eration at time t2. At time t4, two upper PBs, two lower
PBs and PB 9 are restored to prevent the data corruption.

72

D

To be disturbed

Valid page

To be erased (PB 9)

To be erased in case

of data corruption

9

t1 t2 t3 t4 time

Figure 11: Data corruption prevention.

In summary, M-merge restores the possibly corrupted
boundary pages to prevent the data corruption. Although
this proposal increases the number of copied pages dur-
ing M-merge, it still outperforms the baseline merge al-
gorithm, which can be observed in Figure 15a.

M-merge wear-leveling: In the example shown in
both Figure 10 and Figure 11, the PBs in the same block
may be under different number of erase operations due
to partial-erase operation. To mitigate wear-unleveling,
the approach in [30] is adopted. To be more specific, a
block can only be M-merged W times before a baseline
Merge, where W is a (preset) wear-leveling parameter.

5.2.2 M-Merge Algorithm

cost[pb] =Min(restore(pb,disturb),

cost[pb∗2]+ cost[pb∗2+1])
(1)

Our M-Merge algorithm can be accomplished through
various sequences of restores. However, the sequence
that yields the “minimum” cost and preventing data cor-
ruption is preferred. To find such sequence, the recursive
relationship in Equation (1) is introduced, which esti-
mates the cost, represented by cost(pb), of using restore
for PB index (pb), comparing it with the total cost in-
curred for the PB indices (pb∗2) and (pb∗2+1). Then,

the one which offers the minimum cost is chosen. Note
that the restore operation is aware of disturbance, so all
of the valid pages in the PB may be copied out and back
in case of a data corruption, even though the PB has no
invalid pages.

When a GC is triggered, the total cost for M-Merge op-
eration is recursively estimated using Equation (1) start-
ing with the whole block, which is PB 1. The estimated
total cost for M-Merge operation is compared with that
of baseline Merge operation. Based on the relative costs,
the less expensive option is chosen. Note that, our GC
algorithm can switch between Merge and M-Merge op-
erations dynamically based on the relative costs, thus it
is highly adaptive.

Algorithm 1: M-MERGE PLAN ALGORITHM
Input: Dblk: D-block, dis: disturbed pbs in D-block

1 for pb← max pb to 1 do // All PBs
2 cost[pb]←RESTORE(Dblk, pb, dis);
3 trav[pb]← leaf PB;

4 for pb← (max pb/2) to 1 do // Except the smallest PBs
5 if cost[pb∗2]+ cost[pb∗2+1]< cost[pb] then // Equation (1)
6 cost[pb]← cost[pb∗2]+ cost[pb∗2+1];
7 trav[pb]← internal PB;

8 RstrSeq← DFS-TRAVERSAL-LEAF-PB(cost, trav, 1);
9 toCopy← SUM-OF-COPY(RstrSeq);

10 return (cost[1], RstrSeq, toCopy)

Algorithm 1 gives the pseudo-code that determines the
minimum-cost restore sequence to perform M-Merge.
After estimating the cost for M-Merge, the number of
copied pages, which represents the number of pages to
be copied in the first stage of all the restore operations, is
calculated.

Algorithm 2: NFTL MERGE MODIFICATION
Input: Dblk, Ublk

1 dis← φ ; corrupt← True;
2 cost← MERGE-COST(Dblk);
3 do // M-Merge cost
4 (mcost, RstrSeq, toCopy)← M-MERGE-PLAN(Dblk, dis);
5 corrupt← DISTURB-UPDATE(Dblk, RstrSeq, dis);
6 while corrupt 6= True;
7 f reeu← FREE-PAGE(Ublk);
8 if f reeu < toCopy then
9 (space, pbu)← LARGEST-INVALID-PB(Ublk);

10 mcost += PARTIAL-ERASE-TIME(pbu);

11 if mcost < cost && toCopy < f reeu + space &&
Dblk.mmerge count <W then // M-Merge

12 if f reeu < toCopy then
13 PARTIAL-ERASE(pbu);

14 for pb in RstrSeq do
15 DO-RESTORE(pb);

16 else // Baseline Merge
17 MERGE(Dblk);

Algorithm 2 presents the modifications proposed for
the NFTL Merge operation. It initially calculates the
costs for both the Merge and M-Merge operations, and

then chooses the one with the lower cost. To prevent po-
tential data corruption due to M-merge, Algorithm 2 is
repeatedly called with the updated PBs’ disturbance in-
formation. If NFTL decides to execute M-Merge based
on the toCopy pages returned from Algorithm 1, a partial
block in U-block may be erased to ensure that the restore
sequence can be executed successfully.

M-Merge can generate the optimal restore sequence
with minimum cost using Algorithm 1; however, exe-
cuting the restore sequence is not guaranteed to be op-
timal due to insufficient free pages in U-block. In Al-
gorithm 2, to provide more free pages for restore oper-
ations, we partial-erase the largest PB with all invalid
pages before any restore operations. However, this PB
in U-block may not be the optimal one, since a bigger
PB may be generated during the execution of the restore
sequence, not before it. In addition, the free pages in D-
block and the newly-allocated block can also be used as
temporary free pages. However, looking for these possi-
bilities would take too much compute time. Hence, we
choose the method in Algorithm 2.

5.3 M-Merge for Hybrid Mapping
Before describing our modifications to Superblock FTL,
we briefly go over Superblock FTL [21]. In a superblock
implementation, several adjacent logical blocks (say M),
which is the basic unit of address mapping, are grouped
to form a superblock, and each superblock contains sev-
eral (physical) blocks (say N). The GC of Superblock
FTL also employs the Merge operation at a block granu-
larity. The GC for a superblock can be divided into intra-
and inter-superblock GC.

Intra-superblock GC is triggered when a superblock
has no free pages. The goal of the intra-superblock GC
is to clear some free blocks for the subsequent write re-
quests. Therefore, only the blocks with the minimum
valid pages are merged by GC, and consequently, the
read/write requests will not be stalled for too long.

Inter-superblock GC is triggered when there is no
available free block in the NAND chip. The goal of the
inter-superblock GC is to compact the victim superblock
to the fewest number of physical blocks, which has only
M physical blocks, so that the other superblocks can al-
locate available free blocks.

Superblock FTL can apply modifications similar to
NFTL to reduce valid page copies by applying our M-
Merge algorithm multiple times to physical blocks in a
superblock. However, since the concept of D-block in the
Superblock FTL is the cold data block (not the blocks to
be restored), our modification must choose the D- and U-
blocks using by M-Merge amongst the physical blocks
in a superblock. Another important difference between
NFTL and Superblock FTL M-Merge implementations

Algorithm 3: SUPERBLOCK MERGE MODIFICA-
TION

Input: blkset: superblock physical block index set
1 cost← SUPERBLOCK-MERGE-COST(blkset);
2 U-blkset← BLK-SET-WITH-MIN-VALID-PAGES(blkset,M−N);
3 D-blkset← blkset−U-blkset;
4 mcost← 0;
5 for b in D-blkset do // M-Merge cost
6 dis← φ ; corrupt← True;
7 do
8 (mcostb,RstrSeqb, toCopyb)← M-MERGE-PLAN(b, dis);
9 corrupt← DISTURB-UPDATE(b, RstrSeq, dis);

10 while corrupt 6= True;
11 mcost += mcostb;

12 if cost < mcost && blkset.mmerge count ≤W then // Baseline Merge
13 SUPERBLOCK-MERGE(blkset);

14 else // M-Merge
15 for b in D-blkset do
16 if FREE-PAGE(U-blkset) < toCopyb then
17 ALLOC-FREE-BLOCK(U-blkset);

18 for pb in RstrSeqb do
19 DO-RESTORE(pb);

is that the restore operation in Section 5.2 assumes the
pages in D-block are in address order. However, they are
out-of-order across the physical blocks in a superblock;
as a result, the cost to perform restores needs to be ad-
justed accordingly.

Algorithm 3 gives the pseudo-code to determine
whether it is beneficial to execute M-Merge and, if it is,
how to perform M-Merge. The first step of Algorithm 3
is to decide U-blkset – the blocks to be erased. We pick
M−N blocks in the victim superblock with the minimum
number of valid pages as U-blkset, so that the number of
valid pages to be copied is minimal. The second step in-
volves applying Algorithm 1 to all the blocks in D-blkset
and estimating the total cost of M-Merge. The final step
involves deciding whether it is beneficial to perform M-
Merge or conventional Merge.

6 Evaluation

6.1 Experimental Setup
We used the “Flash core cell” model from HSIM [49]
package in Synopsys HSPICE [50] to measure the
partial-erase latency (in milliseconds) for a 3D NAND
flash. Since the partial-erase latencies are governed by
the cell with the slowest erase-rate and not by the num-
ber of cells per partial-block, the partial-erase latencies
are only slightly better compared to the block-erase la-
tency. Please refer to Table 1 for the details on the laten-
cies. We used SSDSim [17] to evaluate our proposed M-
merge algorithm for NFTL and Superblock FTL. Various
parameters used in our SSDSim experiments are listed in
Table 1. The read/write and block-level erase access la-
tencies used in our SSDSim simulations are based on our

SSD parameters
(Page-read, Page-program, Block-erase) (70µs, 900µs, 10ms)

(PB size (pages), partial-erase time (ms)) (L=6)
(288, 9.95), (144, 9.79),
(72, 9.62), (36, 9.48),
(18, 9.37), (9, 9.27)

(Channels, Chips, Dies, Planes, Blocks, Pages) (8, 2, 2, 2, 1888, 576)
(Page Size, Spare area size) (16KB, 1280B)
Total SSD capacity 1TB
(Over provision, Initial data) (10%, 95%)
Number of tolerance disturbance 1
Wear leveling parameters (W) 16

NFTL parameters
(Victim selection, GC free block threshold) (Max invalid, 8%)

Superblock FTL parameters
Logical:physical block ratio (M:N) (4:5), (4:8)
Intra-/Inter-superblock GC threshold (1 PBMT, 8%)

Table 1: Characteristics of the evaluated SSD.

trace read write read write read write
reqs (in reqs (in data data coverage coverage
millions) millions) (in GBs) (in GBs) (in GBs) (in GBs)

hm 0 1.417 2.576 9.96 20.47 1.84 1.63
prn 0 0.602 4.983 13.12 45.96 3.72 12.38
prn 1 8.464 2.77 181.35 30.78 73.78 11.52
proj 0 0.527 3.697 8.97 144.26 1.74 1.65
proj 1 21.143 2.497 750.36 25.57 693.5 9.03
proj 2 25.642 3.625 1015.9 168.68 409.37 115.13
prxy 0 0.384 12.135 3.04 53.8 0.29 0.7
src1 1 43.576 2.17 1485.6 30.34 116.69 4.16
src1 2 0.484 1.424 8.82 44.14 1.55 0.65
stg 1 1.4 0.796 79.52 5.98 79.42 0.39
usr 1 41.426 3.858 2079.2 56.12 651.16 24.56
usr 2 8.575 1.995 415.28 26.46 377.8 10.02

Table 2: Important characteristics of our workloads.

empirical evaluations of the real 3D NAND chips. The
12 evaluated I/O workloads, whose characteristics are
shown in Table 2, are from the revised SNIA traces [37].

We use the following five metrics for our evaluations:
(a) average write latency, (b) throughput, (c) write
amplification, (d) AEP, and (e) VEP. AEP and VEP are
the average and variance number of erase operations per
page, respectively. Those two metrics track the number
of erase operations at a finer granularity, page, unlike the
coarse block granularity in the baseline. This is because,
due to the partial-erase, the different pages in the same
block can experience a different number of erases.

6.2 Experimental Results

6.2.1 Block-Level FTL

Performance: Figure 12b shows the improvement in
read/write throughput (IOPS) for our proposed PEN sys-
tem (using partial-erase) over the baseline system (using
block-erase only) for NFTL. Note that NFTL maintains
the mapping at a unit of a block instead of a page; so,
the GC trigger frequency is relevant not only to the ra-
tio of the written data and the SSD capacity, but also to
the page utilization of blocks; hence, a small amount of
written data may trigger a large number of block merges.

0

0.5

1

1.5
N

o
rm

al
iz

e
d

 W
ri

te

La
te

n
cy

Baseline PEN

(a) Normalized write latency for NFTL.

0

5

10

15

Th
ro

u
gh

p
u

t
(I

O
P

S)

Baseline PEN

(b) Throughput for NFTL.

1

10

100

1000

10000

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline GFTL

(c) Comparison with GFTL.

Figure 12: Performance improvements in the case of NFTL.

0

5

10

15

20

W
ri

te
 A

m
p

. Baseline PEN

(a) Write amplification for NFTL.

0

5

10

15

A
EP

Baseline PEN

(b) AEP for NFTL.

0

5

10

15

V
EP

Baseline PEN

(c) VEP for NFTL.

Figure 13: Write amplification, AEP, and VEP improvements in the case of NFTL.

For example, although workload prn 1 only comprises
of 30.78GB of written data, over 140,000 block merges
are performed. Since M-merge can significantly reduce
block merge overhead, the performance of the workloads
with frequent block merge operations can be highly im-
proved. On average, IOPS is improved by 1.43x over the
baseline system in NFTL.

Figure 12a plots the write access latencies for our PEN
system, normalized to the baseline system. The magni-
tude of improvement in the IOPS and write latencies is
a function of the workload characteristics. For exam-
ple, workloads like proj 1, usr 1, and prn 1, which have
relatively high amounts of coverage (unique data), expe-
rience very high improvements. This is because, as the
coverage in these workloads is very high, a majority of
the U-blocks are already paired with a D-block resulting
in an outage of free U-blocks. When a write is incurred
to a page in an unpaired D-block, a block merge is trig-
gered to reclaim a free U-block that can be paired with
this D-block. Hence, for these workloads, the number of
triggered block merges is very high, with each merge op-
eration lasting several hundreds of milliseconds, owing
to the increased number of valid page copies in the base-
line. Since our M-Merge algorithm reduces the number
of valid pages to be copied, our PEN system yields sig-
nificant improvements in I/O throughput.

Write amplification: Figure 13a shows how our
partial-erase enabled PEN system compared to the base-
line system in terms of write-amplification. The write-
amplification is reduced, on average, by 2.67x, compared
to the baseline.

AEP and VEP: Figures 13b and 13c show the AEP
and VEP, respectively. AEP improvements stem from
the fewer erased pages during M-Merge, thanks to the

partial-erase. On the contrary, VEP improvements result
from the wear-leveling technique [30], the detailed sen-
sitivity results of which can be found in Figure 14c.

GFTL comparison: Figure 12c plots the write laten-
cies for the baseline and GFTL [9], normalized to our
proposed PEN system. Note that GFTL is one kind of
partial GC algorithm, which needs to reserve extreme
long time for the block merge overhead to guarantee the
constant request response time in the “Big Block”. The
figure shows that the GC algorithms designed for 2D
NAND cannot directly be applied to the 3D NAND.

Sensitivity Results: Figure 14a plots the write laten-
cies for our PEN system for different possible PB sizes
(governed by L). As the possible number of PB sizes in-
creases, PEN performs better, since a smaller PB reduces
the copied valid pages in a PB during a block merge, ul-
timately reducing the overall block merge overheads.

Figures 14b and 14c plot the performance and relia-
bility impact of the wear-leveling parameter, W , which
is defined as the number of M-merge operations that can
be performed on a block since the last baseline Merge
for the block. A higher W value can provide better
performance; but, it can also cause the severe skew-
ness on erase count per page, which can be observed
for prn 1, proj 0, and prxy 0 workload. A lower W
value addresses the unevenness issue; but, it reduces the
magnitude of performance improvement. As can be ob-
served, W value 16 results in optimal performance and
reliability. Figure 15a shows the write latency with and
without considering the boundary program disturbance
by the partial-erase operation. Our program-disturbance
aware M-merge slightly increases the average write la-
tency even under the most severe scenario where the
NAND cells can only tolerate one partial-erase from the

0

0.5

1

1.5
N

o
rm

al
iz

e
d

 W
ri

te

La
te

n
cy

Baseline L=1 2 3 4 5 6

(a) Normalized write latency with different
number of PB sizes for NFTL.

0

0.5

1

1.5

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline Unlimited 16 4

(b) Normalized write latency with different
wear leveling parameters for NFTL.

0

6

12

18

V
EP

Baseline Unlimited 16 4

(c) VEP with different wear leveling parame-
ters for NFTL.

Figure 14: Sensitivity results in the case of NFTL.

0

0.5

1

1.5

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline PEN without disturbance PEN

(a) Normalized write latency with/without dis-
turbance for NFTL.

0

20

40

60

80

W
ri

te
 la

te
n

cy
(i

n
 s

e
c)

Request Index

Baseline
PEN

(b) proj 1 write request time graph for NFTL.

0

5

10

15

W
ri

te
 A

m
p

. Baseline PEN(0%) PBE(5.5%)
PBE(11%) PBE(16.5%)

(c) Write amplification comparison with [11].

Figure 15: Other aspects in the case of NFTL.

neighbor cells.
Variation of write latency over time: Figure 15b

plots the write access latencies incurred by various I/O
requests as they are processed in one of our workloads
(proj 1). This graph clearly demonstrates that almost all
the I/O write requests5 experience reduced write access
latency as they do not incur long stall times in the I/O
Queue in our PEN system, unlike the baseline. As a re-
sult, we observe improvements in throughput.

Comparison with partial block erase (PBE) in [11]:
Figure 15c compares PBE and PEN system. PBE en-
ables the partial-erase by employing additional erase cir-
cuits between partial-blocks. Such implementation can
mitigate the program-disturbance problem, but reduces
the total available capacity. The detailed hardware and
FTL modifications are not provided; as a result, we mod-
eled the PBE system as a reduced capacity PEN system
without program disturbance. The effect of loss in ca-
pacity by PBE can be observed in the reduced capacity
change in the step from 0% to 16.5%. As a result, it
incurs more GCs, and thus, PBE increases write amplifi-
cation by 88% compared to PEN.

6.2.2 Hybrid FTL

We now quantify the benefits of PEN over the base-
line intra-/inter-superblock GC for Superblock FTL. We
present the results for two different configurations, where
the first one uses 4 logical blocks and 5 (physical) blocks,
while the second one uses 4 logical blocks and 8 (phys-
ical) blocks. Figures 16a and 16b plot the normalized

5We saw similar results in other workloads as well; but, we could
not present them due to space constraints.

(with respect to the baseline) write and read latencies for
the two configurations mentioned before. Workloads like
proj 1 and usr 1 experience improved read/write laten-
cies and enhanced throughput, due to the same reason
explained in Section 6.2.1. In contrast, other workloads,
especially hm 0 and stg 1, incur fewer inter-superblock
GC; however, they incur more frequent intra-superblock
GCs. Since the intra-superblock GC algorithm chooses
the block in the superblock with the minimum number
of valid pages as the victim block, not many valid pages
need to be copied in the baseline. Hence, the avenues
to improve the access latencies in PEN are minimized.
Therefore, the cases in which PEN can outperform the
intra-superblock GC are when the number of (physical)
blocks is close to the number of logical blocks. Note
that only prn 1 workload shows performance degrada-
tion in the baseline with more physical blocks, since
the GC operations in the latter case are dominated by
inter-superblock GC. Our PEN also reduces the write-
amplification, AEP and VEP (Figures 17a, 17b, and 17c).

7 Related Work

Partial-Erase proposals: Partial-Erase operation has
been proposed [28] for 2D NAND flash, however, it
did not pave way in to the actual products as it did not
improve performance or reliability for 2D NAND flash.
This is because the “Big block” problem is not as severe
in 2D NAND compared to 3D NAND flash.

Partial-Erase operations for 3D NAND have recently
been proposed in [11, 14]. However, due to the imple-
mentation diversity of 3D NAND, there are multiple ap-

0

0.5

1

1.5
N

o
rm

al
iz

e
d

 W
ri

te

La
te

n
cy

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

2.01

(a) Normalized write latency.

2.5

0

0.5

1

1.5

N
o

rm
al

iz
e

d
 R

e
ad

La

te
n

cy

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(b) Normalized read latency.

0

30

60

90

Th
ro

u
gh

p
u

t
(I

O
P

S) 4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(c) Throughput.

Figure 16: Performance improvements in the case of Superblock FTL. (BSL=Baseline)

0

1.5

3

4.5

6

7.5

W
ri

te
 A

m
p

. 4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(a) Write amplification.

0

1

2

3

4

A
EP

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(b) AEP.

0

4

8

12

16

V
EP

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(c) VEP.

Figure 17: Write amplification, AEP, and VEP improvements in the case of Superblock FTL. (BSL=Baseline)

proaches to enable such an operation. Partial block erase
(PBE) [11] is discussed and compared against PEN in
Section 6.2.1. Another implementation, subblock man-
agement [14] only allows three subblocks (two kinds of
PB sizes) in a block. Such an implementation cannot pro-
vide any significant performance improvement, which
can be observed in Figure 14a.

Besides the hardware-based partial-erase proposals,
there also exist software-based proposals. Kim [30] pro-
poses the strategy to address the wear-leveling problem
caused by the partial-erase operation. Subblock erase [8]
proposes a page-level FTL modification for the partial-
erase operation in [11] to alleviate the “Big Block”
problem. However, this proposal assumes that multi-
ple partial-erase operations can be executed simultane-
ously, which necessitates non-trivial modifications to the
underlying peripheral circuit components of the current
NAND chips. In comparison, our PEN necessitates mod-
est changes to the current peripheral circuitry. More im-
portantly, the approach in [8] is only applicable to page-
level FTL, which, as discussed before in Section 2.2.1,
will become impractical in 3D NAND. In comparison,
our approach focuses on the basic building block of GC,
that is, the merge operation.

Partial GC proposals: We now compare our proposal
to the “partial GC” research [7, 9, 23, 25] , conducted in
the context of 2D NAND flash. Chang et al. [7] and
Choudhari et al. [9] proposed periodic partial GC oper-
ations for real-time systems so that they provide mini-
mal performance guarantees. GFTL [9] is discussed and
compared in Section 6.2.1 and Figure 12c, respectively.
AGCDGC and HIOS [23, 25] divide and distribute GC
into more free-time slots, considering the address map-

ping and I/O request queue information, so that an SSD
can have a more stable performance. Since these partial
GC algorithms require additional knowledge to estimate
free-time slots, they are FTL-specific and are not generic
unlike our proposal. In addition, these partial GC algo-
rithms still use coarse “block-level” erase operations, re-
sulting in unnecessary valid pages copies during a GC
operation, unlike our PEN.

8 Conclusion

In this paper, we propose and evaluate a novel partial-
erase based PEN architecture in emerging 3D NAND
flashes, which minimizes the number of valid pages
copied during a GC operation. To show the effectiveness
of our proposed partial-erase operation, we introduce our
M-Merge algorithm that employs our partial-erase opera-
tion for NFTL and Superblock FTL. Our extensive exper-
imental evaluations show that the average write latency
under the proposed PEN system is reduced by 44.3% –
47.9%, compared to the baseline.

9 Acknowledgement

This research is supported by NSF grants 1439021,
1439057, 1409095, 1626251, 1629915, 1629129 and
1526750, and a grant from Intel. Dr. Jung is sup-
ported in part by NRF 2016R1C1B2015312, DOE DE-
AC02-05CH 11231, IITP-2017-2017-0-01015, NRF-
2015M3C4A7065645, and MemRay grant (2015-11-
1731). Kandemir and Jung are the co-corresponding au-
thors. The authors thank Prof. Youjip Won for shepherd-
ing this paper.

References

[1] Micron mt29f8g08baa datasheet. https://www.micron.com/
products/nand-flash/, Feb. 2007.

[2] AGARWAL, R., AND MARROW, M. A closed-form expression
for write amplification in NAND flash. In GLOBECOM Work-
shops (GC Wkshps), 2010 IEEE (2010), pp. 1846–1850.

[3] BAN, A. Flash file system. https://www.google.com/

patents/US5404485, Apr. 4 1995. US Patent 5,404,485.

[4] BOOTH, J. D., KOTRA, J. B., ZHAO, H., KANDEMIR, M., AND
RAGHAVAN, P. Phase detection with hidden markov models for
dvfs on many-core processors. In 2015 IEEE 35th International
Conference on Distributed Computing Systems (ICDCS) (2015).

[5] CAI, Y., MUTLU, O., HARATSCH, E. F., AND MAI, K. Pro-
gram interference in MLC NAND flash memory: Characteriza-
tion, modeling, and mitigation. In 2013 IEEE 31st International
Conference on Computer Design (ICCD) (2013), IEEE.

[6] CAULFIELD, A. M., AND SWANSON, S. Quicksan: A storage
area network for fast, distributed, solid state disks. In Proceed-
ings of the 40th Annual International Symposium on Computer
Architecture (2013).

[7] CHANG, L.-P., KUO, T.-W., AND LO, S.-W. Real-time garbage
collection for flash-memory storage systems of real-time embed-
ded systems. ACM Trans. Embed. Comput. Syst. (Nov. 2004).

[8] CHEN, T.-Y., CHANG, Y.-H., HO, C.-C., AND CHEN, S.-H.
Enabling sub-blocks erase management to boost the performance
of 3d NAND flash memory. In Proceedings of the 53rd Annual
Design Automation Conference (2016), DAC ’16.

[9] CHOUDHURI, S., AND GIVARGIS, T. Deterministic service
guarantees for nand flash using partial block cleaning. In Pro-
ceedings of the 6th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (2008),
CODES+ISSS ’08.

[10] CO., S. E. Samsung V-NAND. http://www.samsung.

com/semiconductor/products/flash-storage/v-nand/,
2016.

[11] D’ABREU, M. A. Partial block erase for a three dimensional (3d)
memory. https://www.google.tl/patents/US9286989,
May 19 2015. US Patent 9,286,989.

[12] DESNOYERS, P. Analytic Models of SSD Write Performance.
ACM Transactions on Storage, 2 (Mar. 2014), 1–25.

[13] DIRIK, C., AND JACOB, B. The performance of pc solid-
state disks (ssds) as a function of bandwidth, concurrency, de-
vice architecture, and system organization. In Proceedings of the
36th Annual International Symposium on Computer Architecture
(2009), ISCA ’09.

[14] EUN CHU OH, J. K. Nonvolatile memory device and sub-
block managing method thereof. https://www.google.

com/patents/US20140063938, Mar. 6 2014. US Patent
2014/063938.

[15] GUPTA, A., KIM, Y., AND URGAONKAR, B. Dftl: A flash
translation layer employing demand-based selective caching of
page-level address mappings. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (2009).

[16] HU, X.-Y., ELEFTHERIOU, E., HAAS, R., ILIADIS, I., AND
PLETKA, R. Write amplification analysis in flash-based solid
state drives. In Proceedings of SYSTOR 2009: The Israeli Exper-
imental Systems Conference (2009), p. 10.

[17] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO, H., AND
ZHANG, S. Performance impact and interplay of SSD paral-
lelism through advanced commands, allocation strategy and data
granularity. In Proceedings of the international conference on
Supercomputing (2011).

[18] HUANG, J., BADAM, A., QURESHI, M. K., AND SCHWAN,
K. Unified address translation for memory-mapped ssds with
flashmap. In Proceedings of the 42Nd Annual International Sym-
posium on Computer Architecture (2015).

[19] IM, J.-W., JEONG, W.-P., KIM, D.-H., NAM, S.-W., SHIM,
D.-K., CHOI, M.-H., YOON, H.-J., KIM, D.-H., KIM, Y.-S.,
PARK, H.-W., AND OTHERS. 7.2 A 128gb 3b/cell V-NAND
flash memory with 1gb/s I/O rate. In 2015 IEEE International
Solid-State Circuits Conference-(ISSCC) Digest of Technical Pa-
pers (2015), IEEE.

[20] JANG, J., KIM, H. S., CHO, W., CHO, H., KIM, J., SHIM,
S. I., YOUNGGOAN, JEONG, J. H., SON, B. K., KIM, D. W.,
KIHYUN, SHIM, J. J., LIM, J. S., KIM, K. H., YI, S. Y., LIM,
J. Y., CHUNG, D., MOON, H. C., HWANG, S., LEE, J. W.,
SON, Y. H., CHUNG, U. I., AND LEE, W. S. Vertical cell array
using tcat(terabit cell array transistor) technology for ultra high
density nand flash memory. In 2009 Symposium on VLSI Tech-
nology (June 2009).

[21] JUNG, D., KANG, J.-U., JO, H., KIM, J.-S., AND LEE, J. Su-
perblock FTL: A superblock-based flash translation layer with a
hybrid address translation scheme. ACM Transactions on Embed-
ded Computing Systems (Mar. 2010).

[22] JUNG, M. Exploring parallel data access methods in emerging
non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems 28, 3 (March 2017), 746–759.

[23] JUNG, M., CHOI, W., SRIKANTAIAH, S., YOO, J., AND KAN-
DEMIR, M. T. Hios: A host interface i/o scheduler for solid state
disks. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (2014).

[24] JUNG, M., AND KANDEMIR, M. Revisiting widely held ssd
expectations and rethinking system-level implications. In Pro-
ceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems (2013), SIG-
METRICS ’13.

[25] JUNG, M., PRABHAKAR, R., AND KANDEMIR, M. T. Tak-
ing garbage collection overheads off the critical path in ssds. In
Proceedings of the 13th International Middleware Conference
(2012).

[26] KANG, D., JEONG, W., KIM, C., KIM, D. H., CHO, Y. S.,
KANG, K. T., RYU, J., KANG, K. M., LEE, S., KIM, W., LEE,
H., YU, J., CHOI, N., JANG, D. S., IHM, J. D., KIM, D., MIN,
Y. S., KIM, M. S., PARK, A. S., SON, J. I., KIM, I. M., KWAK,
P., JUNG, B. K., LEE, D. S., KIM, H., YANG, H. J., BYEON,
D. S., PARK, K. T., KYUNG, K. H., AND CHOI, J. H. 7.1
256gb 3b/cell V-NAND flash memory with 48 stacked WL lay-
ers. In 2016 IEEE International Solid-State Circuits Conference
(ISSCC) (Jan. 2016).

[27] KATSUMATA, R., KITO, M., FUKUZUMI, Y., KIDO, M.,
TANAKA, H., KOMORI, Y., ISHIDUKI, M., MATSUNAMI, J.,

FUJIWARA, T., NAGATA, Y., ZHANG, L., IWATA, Y., KIRI-
SAWA, R., AOCHI, H., AND NITAYAMA, A. Pipe-shaped bics
flash memory with 16 stacked layers and multi-level-cell opera-
tion for ultra high density storage devices. In 2009 Symposium
on VLSI Technology (June 2009).

[28] KI KIM, J. Partial block erase architecture for flash memory.
https://www.google.com/patents/US7804718, Sept. 28
2010. US Patent 7,804,718.

[29] KIM, C., CHO, J. H., JEONG, W., PARK, I. H., PARK, H. W.,
KIM, D. H., KANG, D., LEE, S., LEE, J. S., KIM, W., PARK,
J., AHN, Y. L., LEE, J., LEE, J. H., KIM, S., YOON, H. J., YU,
J., CHOI, N., KWON, Y., KIM, N., JANG, H., PARK, J., SONG,
S., PARK, Y., BANG, J., HONG, S., JEONG, B., KIM, H. J.,
LEE, C., MIN, Y. S., LEE, I., KIM, I. M., KIM, S. H., YOON,
D., KIM, K. S., CHOI, Y., KIM, M., KIM, H., KWAK, P., IHM,
J. D., BYEON, D. S., LEE, J. Y., PARK, K. T., AND KYUNG,
K. H. 11.4 A 512gb 3b/cell 64-stacked WL 3d V-NAND flash
memory. In 2017 IEEE International Solid-State Circuits Con-
ference (ISSCC) (Feb. 2017).

[30] KIM, S.-H. Erasing method of non-volatile memory
device. https://www.google.com/patents/US9025389,
May 5 2015. US Patent 9,025,389.

[31] KIM, W., CHOI, S., SUNG, J., LEE, T., PARK, C., KO, H.,
JUNG, J., YOO, I., AND PARK, Y. Multi-layered vertical gate
nand flash overcoming stacking limit for terabit density storage.
In 2009 Symposium on VLSI Technology (June 2009).

[32] KISLAL, O., , KANDEMIR, M. T., AND KOTRA, J. Cache-
aware approximate computing for decision tree learning. In 2016
IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW) (2016).

[33] KOTRA, J. B., ARJOMAND, M., GUTTMAN, D., KANDEMIR,
M. T., AND DAS, C. R. Re-NUCA: A practical nuca architecture
for reram based last-level caches. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2016).

[34] KOTRA, J. B., GUTTMAN, D., CHIDAMBARAM, N., AND
KANDEMIR, M. T. Quantifying the potential benefits of on-chip
near datacomputing in manycore processors. In 25th IEEE In-
ternational Symposium on the Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS)
(2017).

[35] KOTRA, J. B., KIM, S., MADDURI, K., AND KANDEMIR,
M. T. Congestion-aware memory management on numa plat-
forms: A vmware esxi case study. In IEEE International Sympo-
sium on Workload Characterization (IIWSC) (2017).

[36] KOTRA, J. B., SHAHIDI, N., CHISHTI, Z. A., AND KAN-
DEMIR, M. T. Hardware-software co-design to mitigate dram
refresh overheads: A case for refresh-aware process scheduling.
In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS) (2017).

[37] KWON, M., ZHANG, J., PARK, G., CHOI, W., DONOFRIO, D.,
SHALF, J., KANDEMIR, M., AND JUNG, M. Tracetracker: Hard-
ware/software co-evaluation for large-scale i/o workload recon-
struction.

[38] LEE, S., SHIN, D., KIM, Y.-J., AND KIM, J. Last: Locality-
aware sector translation for nand flash memory-based storage sys-
tems. SIGOPS Oper. Syst. Rev. (Oct. 2008).

[39] LEE, S.-W., MOON, B., PARK, C., KIM, J.-M., AND KIM,
S.-W. A case for flash memory ssd in enterprise database appli-
cations. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (2008).

[40] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK,
S., AND SONG, H.-J. A log buffer-based flash translation layer
using fully-associative sector translation. ACM Trans. Embed.
Comput. Syst. (July 2007).

[41] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S.,
AND WALLACE, G. Nitro: A capacity-optimized ssd cache for
primary storage. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14) (June 2014), USENIX Association.

[42] LI, Y., LEE, P. P., LUI, J. C., AND XU, Y. Impact of Data
Locality on Garbage Collection in SSDs: A General Analytical
Study. pp. 305–315.

[43] LIU, J., KOTRA, J., DING, W., AND KANDEMIR, M. Network
footprint reduction through data access and computation place-
ment in noc-based manycores. In Proceedings of the 52nd Annual
Design Automation Conference (DAC) (2015).

[44] LUOJIE, X., AND KURKOSKI, B. M. An improved analytic
expression for write amplification in NAND flash. In Com-
puting, Networking and Communications (ICNC), 2012 Interna-
tional Conference on (2012), pp. 497–501.

[45] PARK, C., LEE, S., WON, Y., AND AHN, S. Practical impli-
cation of analytical models for ssd write amplification. In Pro-
ceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering (2017), ICPE ’17, pp. 257–262.

[46] PRINCE, B. Vertical 3D Memory Technologies. John Wiley &
Sons, Inc., 2014.

[47] RINO MICHELONI, LUCA CRIPPA, A. M. Inside NAND Flash
Memory. Springer Netherlands, 2010.

[48] SWAMINATHAN, K., KOTRA, J., LIU, H., SAMPSON, J., KAN-
DEMIR, M., AND NARAYANAN, V. Thermal-aware application
scheduling on device-heterogeneous embedded architectures. In
2015 28th International Conference on VLSI Design (2015).

[49] SYNOPSYS. Hsim simulation reference manual. http://www.

synopsys.com/Tools/Verification/AMSVerification/

CircuitSimulation/HSIM/Pages/default.aspx, 2016.
Synopsys HSIM.

[50] SYNOPSYS. Hspice. https://www.synopsys.com/tools/

Verification/AMSVerification/CircuitSimulation/

HSPICE/Pages/default.aspx, 2016. Synopsys HSpice.

[51] TANAKA, H., KIDO, M., YAHASHI, K., OOMURA, M., KAT-
SUMATA, R., KITO, M., FUKUZUMI, Y., SATO, M., NAGATA,
Y., MATSUOKA, Y., IWATA, Y., AOCHI, H., AND NITAYAMA,
A. Bit cost scalable technology with punch and plug process for
ultra high density flash memory. In 2007 IEEE Symposium on
VLSI Technology (June 2007).

[52] TANG, X., KANDEMIR, M., YEDLAPALLI, P., AND KOTRA, J.
Improving bank-level parallelism for irregular applications. In
2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO) (2016).

[53] YAMASHITA, R., MAGIA, S., HIGUCHI, T., YONEYA, K.,
YAMAMURA, T., MIZUKOSHI, H., ZAITSU, S., YAMASHITA,
M., TOYAMA, S., KAMAE, N., LEE, J., CHEN, S., TAO, J.,
MAK, W., ZHANG, X., YU, Y., UTSUNOMIYA, Y., KATO,
Y., SAKAI, M., MATSUMOTO, M., CHIBVONGODZE, H.,

OOKUMA, N., YABE, H., TAIGOR, S., SAMINENI, R., KO-
DAMA, T., KAMATA, Y., NAMAI, Y., HUYNH, J., WANG,
S. E., HE, Y., PHAM, T., SARAF, V., PETKAR, A., WATANABE,
M., HAYASHI, K., SWARNKAR, P., MIWA, H., PRADHAN, A.,
DEY, S., DWIBEDY, D., XAVIER, T., BALAGA, M., AGARWAL,
S., KULKARNI, S., PAPASAHEB, Z., DEORA, S., HONG, P.,
WEI, M., BALAKRISHNAN, G., ARIKI, T., VERMA, K., SIAU,
C., DONG, Y., LU, C. H., MIWA, T., AND MOOGAT, F. 11.1 A
512gb 3b/cell flash memory on 64-word-line-layer BiCS technol-
ogy. In 2017 IEEE International Solid-State Circuits Conference
(ISSCC) (Feb. 2017).

[54] YANG, M. C., CHANG, Y. M., TSAO, C. W., HUANG, P. C.,
CHANG, Y. H., AND KUO, T. W. Garbage collection and wear
leveling for flash memory: Past and future. In Smart Computing
(SMARTCOMP), 2014 International Conference on (Nov 2014).

[55] YANG, Q., AND REN, J. I-cash: Intelligently coupled array of
ssd and hdd. In 2011 IEEE 17th International Symposium on
High Performance Computer Architecture (Feb 2011).

[56] YEDLAPALLI, P., KOTRA, J., KULTURSAY, E., KANDEMIR,
M., DAS, C. R., AND SIVASUBRAMANIAM, A. Meeting mid-
way: Improving cmp performance with memory-side prefetch-
ing. In Proceedings of the 22nd International Conference on Par-
allel Architectures and Compilation Techniques (PACT) (2013).

[57] YOO, J., WON, Y., KANG, S., CHOI, J., YOON, S., AND CHA,
J. Analytical model of ssd parallelism. In 2014 4th International
Conference On Simulation And Modeling Methodologies, Tech-
nologies And Applications (SIMULTECH) (Aug 2014), pp. 551–
559.

[58] ZHANG, J., PARK, G., SHIHAB, M. M., DONOFRIO, D.,
SHALF, J., AND JUNG, M. Opennvm: An open-sourced fpga-
based nvm controller for low level memory characterization. In
2015 33rd IEEE International Conference on Computer Design
(ICCD) (Oct 2015), pp. 666–673.

